
New I/O in JDKTM 7

Alan Bateman
Sun Microsystems Inc.

Carl Quinn
Google Inc.

TS-5686

2008 JavaOneSM Conference | java.sun.com/javaone | 2

Learn about the new File System API,
Asynchronous I/O, and the many other
updates to the New I/O APIs

2008 JavaOneSM Conference | java.sun.com/javaone | 3

Outline
File System API
Channels API
• Updates to socket channel API
• Asynchronous I/O

Miscellaneous Topics
Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 4

Outline
File System API
Channels API
• Updates to socket channel API
• Asynchronous I/O

Miscellaneous
Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 5

What's wrong with java.io.File?

2008 JavaOneSM Conference | java.sun.com/javaone | 6

New File System API
New packages:
• java.nio.file, java.nio.file.attribute

Main classes:
• FileSystem
• Interface to file system
• Factory for objects to access files and other objects in file system

• FileRef
• Reference to file or directory
• Defines methods to operate on file or directory

• Path
• A FileRef that locates a file by a system dependent path
• Created by FileSystem by converting path string or URI

• FileStore
• Underlying storage pool, device, partition...

2008 JavaOneSM Conference | java.sun.com/javaone | 7

Hello World

import java.nio.file.*;
Path home = Path.get("/home/gus");
Path profile = home.resolve(".bash_profile");
// Backup existing file
profile.copyTo(home.resolve(".bash_profile.backup"));
// Append useful stuff to the profile
WritableByteChannel ch = profile.newSeekableByteChannel(APPEND);
try {
 appendStuff(ch);
} finally {
 ch.close();
}

2008 JavaOneSM Conference | java.sun.com/javaone | 8

Overview of Path
Methods to access components
Methods to test and compare
Methods to combine paths
File operations
All methods that access file system throw IOException
• No other checked exceptions in API

2008 JavaOneSM Conference | java.sun.com/javaone | 9

Opening/Creating Files
Stream I/O
• newInputStream and newOutputStream methods
• Interoperability with java.io package

Channel I/O
• java.nio.channels.SeekableByteChannel
• ByteChannel that maintains a position
• Channel equivalent of RandomAccessFile

• newSeekableByteChannel methods to open or create file
• InterruptibleChannel semantics
• Asynchronously closeable and interruptible

• READ, WRITE, APPEND, TRUNCATE_EXISTING, CREATE,
CREATE_NEW, NOFOLLOW_LINKS, SYNC, DSYNC...

Optionally set initial attributes when creating files
• important for file permissions

2008 JavaOneSM Conference | java.sun.com/javaone | 10

Copying and Moving Files
copyTo method to copy file to target location
• Options to replace existing file, copy file attributes...

moveTo method to move file to target location
• Option to replace existing file
• Option to require operation to be atomic

import static java.nio.file.StandardCopyOption.*;
Path source = Path.get("C:\\My Documents\\Stuff.odp");
Path target = Path.get("D:\\Backup\\MyStuff.odp");
source.copyTo(target);
source.copyTo(target, REPLACE_EXISTING, COPY_ATTRIBUTES);

2008 JavaOneSM Conference | java.sun.com/javaone | 11

Symbolic Links (1/2)
Unix semantics
• Follow links by default except for delete and moveTo
• File attribute views can be configured to follow links or not
• Methods to create link, read target, and test if file is a symbolic link
• Works on Windows Vista

More API support
• isSameFile to test if two objects reference the same file
• copyTo option to copy link (default is to copy final target)
• toRealPath option to expand links or not
• walkFileTree method detects loops when following links

Basic support for hard links
• createLink, linkCount

2008 JavaOneSM Conference | java.sun.com/javaone | 12

Symbolic Links (2/2)

Path file = Path.get("/usr/spool");
// read file attributes of the link
BasicFileAttributes attrs = Attributes
 .readBasicFileAttributes(file, false);
if (attrs.isSymbolicLink()) {
 // read target of link
 Path target = file.readSymbolicLink();
 // check /usr/spool == /usr/spool/../var/spool
 assert file.isSameFile(file.resolve(target));
}

2008 JavaOneSM Conference | java.sun.com/javaone | 13

Directories (1/2)
DirectoryStream
• To iterate over the entries in a directory
• Scales to large directories
• Optional filter to decide if entries should be accepted or filtered
• Built-in filters to match file names using glob or regular expression

Path dir = Path.get("mydir");
DirectoryStream stream = dir.newDirectoryStream("*.java");
try {
 for (DirectoryEntry entry: stream) {
 System.out.println(entry.getName());
 }
} finally {
 stream.close();
}

2008 JavaOneSM Conference | java.sun.com/javaone | 14

Directories (1/2)
DirectoryStream
• To iterate over the entries in a directory
• Scales to large directories
• Optional filter to decide if entries should be accepted or filtered
• Built-in filters to match file names using glob or regular expression

Path dir = Path.get("mydir");
Files.withDirectory(dir, "*.java", new DirectoryAction() {
 public void invoke(DirectoryEntry entry) {
 System.out.println(entry.getName());
 }
});

2008 JavaOneSM Conference | java.sun.com/javaone | 15

Directories (2/2)
DirectoryStreamFilters
• Factory methods for useful filters
• newContentTypeFilter
• Accept entry based on its MIME type
• Use installed file type detectors

• Combine filters into simple expressions
Files.walkFileTree utility method
• Recursively descends directory hierarchy rooted at starting file
• Easy to use internal iterator
• FileVisitor invoked for each directory/file in hierarchy
• Options to control if symbolic links are followed, maximum depth...

• Use to implement recursive copy, move, delete, chmod...

2008 JavaOneSM Conference | java.sun.com/javaone | 16

File Attributes (1/4)
Meta-data associated with files
• Time stamps, file owner, permissions...
• Highly platform/file system specific

Approach:
• Organize related attributes into groups
• Define FileAttributeView that provides a view of these attributes
• A view may extend or overlap with other views
• May need to translate to/from file system representation

• BasicFileAttributeView provides a view of a basic set of attributes
• required to be supported by all implementations

• Specification defines other FileAttributeView types
• Access to POSIX, DOS, ACLs, Named...

• Implementation may support others

2008 JavaOneSM Conference | java.sun.com/javaone | 17

File Attributes (2/4)
newFileAttributeView method
• selects view by class literal that works as type-token
• method returns instance of view

BasicFileAttributeView view =
 file.newFileAttributeView(BasicFileAttributeView.class, true);
// bulk read of basic attributes
BasicFileAttributes attrs = view.readAttributes();

Bulk read of BasicFileAttributes
• size, isDirectory, isRegularFile, isSymbolicLink, lastModifiedTime,

lastAccessTime...
Attributes utility class makes it easy for common cases

2008 JavaOneSM Conference | java.sun.com/javaone | 18

File Attributes (2/4)
newFileAttributeView method
• selects view by class literal that works as type-token
• method returns instance of view

// bulk read of basic attributes
BasicFileAttributes attrs =
 Attributes.readBasicFileAttributes(file, true);

Bulk read of BasicFileAttributes
• size, isDirectory, isRegularFile, isSymbolicLink, lastModifiedTime,

lastAccessTime...
Attributes utility class makes it easy for common cases

2008 JavaOneSM Conference | java.sun.com/javaone | 19

File Attributes (3/4)
PosixFileAttributeView
• Unix equivalent of stat, chmod, chown...

PosixFileAttributes attrs =
 Attributes.readPosixFileAttributes(file, true);
String mode = PosixFilePermission.toString(attrs.permissions());
System.out.format("%s %s %s", mode, attrs.owner(), attr.group());
 rwxrw-r-- alanb java

import static java.nio.file.attribute.PosixFilePermission.*;
Attributes.setPosixFilePermissions(file,
 OWNER_READ, OWNER_WRITE, GROUP_WRITE, OTHERS_READ);

2008 JavaOneSM Conference | java.sun.com/javaone | 20

File Attributes (4/4)
DosFileAttributeView
• Provides access to legacy DOS attributes
• Implementable "server-side" on non-Windows platforms

AclFileAttributeView
• Provides access to Access Control Lists (ACLs)
• Based on NFSv4 ACL model

NamedAttributeView
• Provides access to attributes as name/value pairs
• Mappable to file systems that support named subfiles

2008 JavaOneSM Conference | java.sun.com/javaone | 21

File change notification (1/2)
Address need of applications that need to detect changes
or events caused by non communicating entities
• IDEs, poll directory for WAR files to deploy...

WatchService
• Watches registered objects for changes
• Make use of inotify, FEN... where available
• Consumer threads poll watch service to retrieve events
• Multiple threads can service events concurrently
• Easy to build listener interface for graphical applications

2008 JavaOneSM Conference | java.sun.com/javaone | 22

WatchService watcher = FileSystems.getDefault().newWatchService();
Set<StandardWatchEventType> events =
 EnumSet.of(ENTRY_CREATE, ENTRY_DELETE, ENTRY_MODIFY);
WatchKey key = dir.register(watcher, events);
for (;;) {
 // wait for key to be signalled
 key = watcher.take();
 // process events
 for (WatchEvent<?> ev: key.pollEvents()) {
 if (event.getType() == ENTRY_MODIFY) {
 :
 }
 }
 // reset key
 key.reset();
}

File change notification (2/2)

2008 JavaOneSM Conference | java.sun.com/javaone | 23

Interoperability
java.io.File getFileRef method to
• Fix problems without major re-writes
• Make it easy to make use of new features
File source = ...
File target = ...
if (!source.renameTo(target)) {
 System.err.println("Your guess is as good as mine");
}

java.util.Scanner and java.util.Formatter updated

2008 JavaOneSM Conference | java.sun.com/javaone | 24

Interoperability
java.io.File getFileRef method to
• Fix problems without major re-writes
• Make it easy to make use of new features
File source = ...
File target = ...
try {
 source.getFileRef().moveTo(target.getFileRef());
} catch (IOException x} {
 System.err.println(x);
}

java.util.Scanner and java.util.Formatter updated

2008 JavaOneSM Conference | java.sun.com/javaone | 25

Provider interface
Allows for:
• Replacement of default file system provider
• Interposing on default system provider
• Development and deployment of custom file systems

Custom file systems:
• Develop FileSystemProvider implementation
• Factory for FileSystem objects
• FileSystem identified by URI
• Each FileSystem is distinct (no direct support for federation)
• Deploy as Java™ Archive (JAR) file as extension or use custom

class loader
• Potential to load providers from repositories or module class loader

when Java™ Module System integrated

2008 JavaOneSM Conference | java.sun.com/javaone | 26

Outline
File System API
Channels API
• Updates to socket channel API
• Asynchronous I/O

Miscellaneous Topics
Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 27

Updates to Socket channel API (1/2)
Motivation
• Network channels not complete abstraction of network socket
• Forced to mix channel and socket APIs to
• bind, manipulate socket options...

• Legacy Socket behavior must be emulated by socket adapter
• Can't make use of platform specific socket options

Approach
• NetworkChannel - channel to network socket
• Defines bind, getLocalAddress, setOption, getOption, methods
• Existing channel retrofitted to implement interface

2008 JavaOneSM Conference | java.sun.com/javaone | 28

Updates to Socket channel API (2/2)

Multicasting
• MulticastChannel
• A NetworkChannel that can join multicast groups

• Implemented by
• DatagramChannel
• AsynchronousDatagramChannel

• Use opportunity to bring platform support up to date
• Source-specific multicasting (IGMPv3, MLDv2)

2008 JavaOneSM Conference | java.sun.com/javaone | 29

Outline
File System API
Channels API
• Updates to socket channel API
• Asynchronous I/O

Miscellaneous Topics
Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 30

Asynchronous I/O
Goal
• Asynchronous I/O API to both sockets and files
• Take advantage of operating system I/O facilities where available

API
• Future style
• Initiate I/O operation, returning java.util.concurrent.Future
• Future interface defines methods to test or wait for completion

• Callback style
• Specify CompletionHandler when invoking I/O operation
• CompletionHandler invoked when I/O operation completes (or fails)

2008 JavaOneSM Conference | java.sun.com/javaone | 31

Asynchronous I/O: Future style
AsynchronousSocketChannel ch = AsynchronousSocketChannel.open();

// initiate connection
// wait for connection to be established or failure
Future<Void> result = ch.connect(remote);
result.get();
ByteBuffer buf = ...

// initiate read
Future<Integer> result = ch.read(buf);
// do something
// wait for read to complete
try {
 int bytesRead = result.get();
 :
} catch (ExecutionExecption x) {
 // failed
}

2008 JavaOneSM Conference | java.sun.com/javaone | 32

Asynchronous I/O: Callback-style

ByteBuffer buf = ...
// CompletionHandler invoked when read completes
ch.read(buffer, ..., new CompletionHandler<Integer,Void>() {
 public void completed(IoFuture<Integer,Void> result) {
 try {
 int bytesRead = result.getNow();
 } catch (IOException x) {
 // error handling
 }
 }
});

2008 JavaOneSM Conference | java.sun.com/javaone | 33

What about Threads?
Who invokes the completion handler?
• Initiating thread
• Thread in channel group's thread pool

Channel Group
• Encapsulates mechanics required to handle I/O completion
• Has associated thread pool
• Each asynchronous channel is bound to a group
• default group
• or specify group when creating channel

• Configured by parameters
• ThreadFactory
• maximum threads to handle I/O events
• ...

2008 JavaOneSM Conference | java.sun.com/javaone | 34

Other Asynchronous I/O topics
Timeouts
Asynchronous close
Cancellation
Provider interface
• For the adventurous

2008 JavaOneSM Conference | java.sun.com/javaone | 35

Outline
File System API
Channels API
• Updates to socket channel API
• Asynchronous I/O

Miscellaneous Updates
Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 36

Miscellaneous Updates
Infiniband (IB) Sockets Direct Protocol (SDP)
• Standard wire protocol over IB for stream oriented sockets
• Uses Internet Protocol addressing
• Use existing networking or socket-channel API
• Select SDP protocol when creating socket or channel

Stream Control Transport Protocol (SCTP)
• Support blocking and non-blocking modes
• Notifications when association changes, send fails, shutdown...
• SctpSocketChannel
• One-to-one style, similar to TCP, one SCTP association

• SctpOneToManySocketChannel
• One-to-many style, similar to UDP, multiple SCTP associations,

association branch-off...

2008 JavaOneSM Conference | java.sun.com/javaone | 37

Outline
File System API
Channels API
• Updates to socket channel API
• Asynchronous I/O

Miscellaneous Topics
Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 38

More information
JSR page:
• http://jcp.org/en/jsr/detail?id=203

Project page:
• http://openjdk.java.net/projects/nio/
• Source code now

Mailing lists
• nio-dev@openjdk.java.net
• nio-discuss@openjdk.java.net

Coming soon
• Early access binaries
• More samples

2008 JavaOneSM Conference | java.sun.com/javaone | 39

Alan Bateman

Sun Microsystems Inc.

Carl Quinn
Google Inc.

TS-5686

